Publications

32 total; 13 first-author; 7 led by co-advised students.
Link to ADS Library, Google Scholar, ORCID:0000-0002-6648-7136

First author

  1. Semenov 2025 | ApJS 281, 37 | arXiv:2410.23339 | ADS
    Capturing Turbulence with Numerical Dissipation: a Simple Dynamical Model for Unresolved Turbulence in Hydrodynamic Simulations
  2. Semenov, Conroy, Hernquist 2025 | ApJ 989, 219 | arXiv:2410.09205 | ADS
    From UV-bright Galaxies to Early Disks: the Importance of Turbulent Star Formation in the Early Universe
  3. Semenov, Conroy, Smith, Puchwein, Hernquist 2025 | ApJ 990, 7 | arXiv:2409.18173 | ADS
    How Early Could the Milky Way’s Disk Form?
  4. Semenov, Conroy, Chandra, Hernquist, Nelson 2024 | ApJ 962, 84 | arXiv:2306.09398 | ADS
    Formation of Galactic Disks I: Why did the Milky Way’s Disk Form Unusually Early?
  5. Semenov, Conroy, Chandra, Hernquist, Nelson 2023 | ApJ 972, 73 | arXiv:2306.13125 | ADS
    Formation of Galactic Disks II: the Physical Drivers of Disk Spin-up
  6. Semenov, Kravtsov, Diemer 2022 | ApJS 261, 16 | arXiv:2107.14240 | ADS
    Entropy-Conserving Scheme for Modeling Nonthermal Energies in Fluid Dynamics Simulations
  7. Semenov, Kravtsov, Gnedin 2021 | ApJ 918, 13 | arXiv:2103.13406 | ADS
    Spatial Decorrelation of Young Stars and Dense Gas as a Probe of the Star Formation–Feedback Cycle in Galaxies
  8. Semenov, Kravtsov, Caprioli 2021 | ApJ 910, 126 | arXiv:2012.01427 | ADS
    Cosmic Ray Diffusion Suppression in Star-Forming Regions Inhibits Clump Formation in Gas-Rich Galaxies
  9. Semenov, Kravtsov, Gnedin 2019 | ApJ 870, 79 | arXiv:1809.07328 | ADS
    What Sets the Slope of the Molecular Kennicutt–Schmidt Relation?
  10. Semenov, Kravtsov, Gnedin 2018 | ApJ 861, 4 | arXiv:1803.00007 | ADS
    How Galaxies Form Stars: the Connection between Local and Global Star Formation in Galaxy Simulations
  11. Semenov, Kravtsov, Gnedin 2017 | ApJ 845, 133 | arXiv:1704.04239 | ADS
    The Physical Origin of Long Gas Depletion Times in Galaxies
  12. Semenov, Kravtsov, Gnedin 2016 | ApJ 826, 200 | arXiv:1512.03101 | ADS
    Nonuniversal Star Formation Efficiency in Turbulent ISM
  13. Semenov 2013 | Astronomy Reports 57, 485 | ADS
    Statistical Analysis of the Large-Scale Structure of the Universe Using Observational Data and Numerical Modeling

Led by co-advised students

  1. Konietzka, Connor, Semenov, Beane, Springel, Hernquist 2025 | ApJ subm. | arXiv:2507.07090 | ADS
    Ray-tracing Fast Radio Bursts Through IllustrisTNG: Cosmological Dispersion Measures from Redshift 0 to 5.5
  2. Polzin, Kravtsov, Semenov, Gnedin 2024 | OJAp 7, 114 | arXiv:2407.11125 | ADS
    On the Universality of Star Formation Efficiency in Galaxies
  3. Polzin, Kravtsov, Semenov, Gnedin 2024 | ApJ 966, 172 | arXiv:2310.10712 | ADS
    Modeling Molecular Hydrogen in Low Metallicity Galaxies
  4. Chandra, Semenov, Rix, Conroy, Bonaca, Naidu, Andrae, Li, Hernquist 2023 | ApJ 972, 112 | arXiv:2310.13050 | ADS
    The Three-Phase Evolution of the Milky Way
  5. Han, Semenov, Conroy, Hernquist 2023 | ApJL 954, L24 | arXiv:2309.07208 | ADS
    Tilted Dark Halos are Common, Long-Lived, and Can Warp Galactic Disks
  6. Appel, Burkhart, Semenov, Federrath, Rosen, Tan 2023 | ApJ 954, 93 | arXiv:2301.07723 | ADS
    What Sets the Star Formation Rate of Molecular Clouds? The Density Distribution as a Fingerprint of Compression and Expansion Rates
  7. Appel, Burkhart, Semenov, Federrath, Rosen 2022 | ApJ 927, 75 | arXiv:2109.13271 | ADS
    The Effects of Magnetic Fields and Outflow Feedback on the Shape and Evolution of the Density PDF in Turbulent Star-Forming Clouds

In collaboration

  1. Wheeler, Kravtsov, Chiti, Katz, Semenov 2025 | OJAp 8, 151 | arXiv:2507.03182 | ADS
    What Sets the Metallicity of Ultra-Faint Dwarfs?
  2. Segovia Otero, Agertz, Renaud, Kraljic, Romeo, Semenov 2025 | MNRAS 538, 2646 | arXiv:2410.08266 | ADS
    Cosmic evolution of the star formation efficiency in Milky Way-like galaxies
  3. Robinson, Avestruz, Gnedin, Semenov 2024 | OJAp subm. | arXiv:2412.15324 | ADS
    The effects of different cooling and heating function models on a simulated analog of NGC300
  4. Beane, Johnson, Semenov, Hernquist, Chandra, Conroy 2024 | ApJ 985, 221 | arXiv:2410.21580 | ADS
    Cosmic evolution of the star formation efficiency in Milky Way-like galaxies
  5. Aung, Mandelker, Dekel, Semenov, van den Bosch 2024 | MNRAS 532, 2965 | arXiv:2403.00912 | ADS
    Entrainment of Hot Gas into Cold Streams: The Origin of Excessive Star-formation Rates at Cosmic Noon
  6. Kiihne, Appel, Burkhart, Semenov, Federrath 2023 | ApJ 979, 89 | arXiv:2305.11218 | ADS
    Fitting Probability Distribution Functions in Turbulent Star-Forming Molecular Clouds
  7. Jeffreson, Semenov, Krumholz 2023 | MNRAS 527, 7093 | arXiv:2301.10251 | ADS
    Clouds of Theseus: Long-lived Molecular Clouds are Composed of Short-lived H2 Molecules
  8. Shin, Tacchella, Kim, Iyer, Semenov 2023 | ApJ 947, 61 | arXiv:2211.01922 | ADS
    Star Formation Variability as a Probe for the Baryon Cycle within Galaxies
  9. Bialy, Zucker, Goodman, Foley, Alves, Semenov, Benjamin, Leike, Enßlin 2021 | ApJL 919, L5 | arXiv:2109.09763 | ADS
    The Per-Tau Shell: A Giant Star-forming Spherical Shell Revealed by 3D Dust Observations
  10. Gnedin, Semenov, Kravtsov 2018 | JCoPh 359, 93 | arXiv:1801.03108 | ADS
    Enforcing the Courant–Friedrichs–Lewy Condition in Explicitly Conservative Local Time Stepping Schemes
  11. Li, Gnedin, Gnedin, Meng, Semenov, Kravtsov 2017 | ApJ 834, 69 | arXiv:1608.03244 | ADS
    Star Cluster Formation in Cosmological Simulations. I. Properties of Young Clusters
  12. Kim et al. (AGORA Collaboration) 2016 | ApJ 833, 202 | arXiv:1610.03066 | ADS
    The AGORA High-resolution Galaxy Simulations Comparison Project. II. Isolated Disk Test